

A.B. Bhattacharya

Atanu Nag

KHANNA BOOK PUBLISHING CO. (P) LTD.

PUBLISHER OF ENGINEERING AND COMPUTER BOOKS 4C/4344, Ansari Road, Darya Ganj, New Delhi-110002 Phone: 011-23244447-48 Mobile: +91-99109 09320 E-mail: contact@khannabooks.com Website: www.khannabooks.com Dear Readers,

To prevent the piracy, this book is secured with HIGH SECURITY HOLOGRAM on the front title cover. In case you don't find the hologram on the front cover title, please write us to at contact@khannabooks.com or whatsapp us at +91-99109 09320 and avail special gift voucher for yourself.

Specimen of Hologram on front Cover title:

Moreover, there is a SPECIAL DISCOUNT COUPON for you with EVERY HOLOGRAM.

How to avail this SPECIAL DISCOUNT:

Step 1: Scratch the hologram

Step 2: Under the scratch area, your "coupon code" is available

Step 3: Logon to www.khannabooks.com

Step 4: Use your "coupon code" in the shopping cart and get your copy at a special discount

Step 5: Enjoy your reading!

ISBN: 978-93-91505-16-5 Book Code: UG007EN

Physics (Introduction to Electromagnetic Theory)

by A. B. Bhattacharya, Atanu Nag **[English Edition]**

First Edition: 2021

Published by:

Khanna Book Publishing Co. (P) Ltd. Visit us at: www.khannabooks.com Write us at: contact@khannabooks.com *CIN: U22110DL1998PTC095547*

To view complete list of books, Please scan the QR Code:

Copyright © Reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior permission of the publisher.

This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold, hired out or otherwise disposed of without the publisher's consent, in any form of binding or cover other than that in which it is published.

Disclaimer: The website links provided by the author in this book are placed for informational, educational & reference purpose only. The Publisher do not endorse these website links or the views of the speaker/ content of the said weblinks. In case of any dispute, all legal matters to be settled under Delhi Jurisdiction only.

Printed in India.

प्रो. अनिल डी. सहम्रबुद्धे अघ्यक्ष Prof. Anil D. Sahasrabudhe ^{Chairman}

सत्यमेव जयते

अखिल भारतीय तकनीकी शिक्षा परिषद् (मारत सरकार का एक सांविधिक निकाय) (शिक्षा मंत्रालय, मारत सरकार) नेल्सन मंडेला मार्ग, बसंत कुज, नई दिल्ली–110070 दूरमाष : 011–26131498 ई–मेल : chairman@aicte-india.org

ALL INDIA COUNCIL FOR TECHNICAL EDUCATION (A STATUTORY BODY OF THE GOVT. OF INDIA) (Ministry of Education, Govt. of India) Nelson Mandela Marg, Vasant Kunj, New Delhi-110070 Phone : 011-26131498 E-mail : chairman@aicte-india.org

FOREWORD

Engineering has played a very significant role in the progress and expansion of mankind and society for centuries. Engineering ideas that originated in the Indian subcontinent have had a thoughtful impact on the world.

All India Council for Technical Education (AICTE) had always been at the forefront of assisting Technical students in every possible manner since its inception in 1987. The goal of AICTE has been to promote quality Technical Education and thereby take the industry to a greater heights and ultimately turn our dear motherland India into a Modern Developed Nation. It will not be inept to mention here that Engineers are the backbone of the modern society - better the engineers, better the industry, and better the industry, better the country.

NEP 2020 envisages education in regional languages to all, thereby ensuring that each and every student becomes capable and competent enough and is in a position to contribute towards the national growth and development.

One of the spheres where AICTE had been relentlessly working from last few years was to provide high-quality moderately priced books of International standard prepared in various regional languages to all it's Engineering students. These books are not only prepared keeping in mind it's easy language, real life examples, rich contents and but also the industry needs in this everyday changing world. These books are as per AICTE Model Curriculum of Engineering & Technology – 2018.

Eminent Professors from all over India with great knowledge and experience have written these books for the benefit of academic fraternity. AICTE is confident that these books with their rich contents will help technical students master the subjects with greater ease and quality.

AICTE appreciates the hard work of the original authors, coordinators and the translators for their endeavour in making these Engineering subjects more lucid.

- AD ahre

(Anil D. Sahasrabudhe)

Acknowledgement

The author(s) are grateful to AICTE for their meticulous planning and execution to publish the technical book for Engineering and Technology students.

We sincerely acknowledge the valuable contributions of the reviewer of the book Prof. R.P Dahiya, for making it students' friendly and giving a better shape in an artistic manner.

This book is an outcome of various suggestions of AICTE members, experts and authors who shared their opinion and thoughts to further develop the engineering education in our country.

It is also with great honour that we state that this book is aligned to the AICTE Model Curriculum and in line with the guidelines of National Education Policy (NEP) -2020. Towards promoting education in regional languages, this book is being translated in scheduled Indian regional languages.

Acknowledgements are due to the contributors and different workers in this field whose published books, review articles, papers, photographs, footnotes, references and other valuable information enriched us at the time of writing the book.

Finally, we like to express our sincere thanks to the publishing house, M/s. Khanna Book Publishing Company Private Limited, New Delhi, whose entire team was always ready to cooperate on all the aspects of publishing to make it a wonderful experience.

A. B. Bhattacharya, Atanu Nag

Preface

The book titled **"Physics - Introduction to Electromagnetic Theory"** is an outcome of the rich experience of our teaching of basic physics courses. The initiation of writing this book is to expose basic science to the engineering students to the fundamentals of physics as well as enable them to get an insight of the subject. Keeping in mind the purpose of wide coverage as well as to provide essential supplementary information, we have included the topics recommended by AICTE, in a very systematic and orderly manner throughout the book. Efforts have been made to explain the fundamental concepts of the subject in the simplest possible way.

During the process of preparation of the manuscript, we have considered the various standard text books and accordingly we have developed sections like critical questions, solved and supplementary problems etc. While preparing the different sections emphasis has also been laid on definitions and laws and also on comprehensive synopsis of formulae for a quick revision of the basic principles. The book covers all types of medium and advanced level problems and these have been presented in a very logical and systematic manner. The gradations of those problems have been tested over many years of teaching a wide variety of students.

Apart from illustrations and examples as required, we have enriched the book with numerous solved problems in every unit for proper understanding of the related topics. Under the common title "Physics" there is a set of four books covering different aspects and applications of physics in engineering. Out of those, the first one covers Introduction to Electromagnetic Theory, the second one is based on Introduction to Mechanics, the third one is related to Quantum Mechanics for Engineers and the fourth one is based on Oscillations, Waves and Optics. It is important to note that in all the books, we have included the relevant laboratory practical. In addition, besides some essential information for the users under the heading "Know More" we have clarified some essential basic information in the appendix and annexure section.

As far as the present book is concerned, "Physics - Introduction to Electromagnetic Theory" is meant to provide a thorough grounding in applied physics on the topics covered. This part of the physics book will prepare engineering students to apply the knowledge of Electromagnetic Theory to tackle 21st century and onward engineering challenges and address the related aroused questions. The subject matters are presented in a constructive manner so that an Engineering degree prepares students to work in different sectors or in national laboratories at the very forefront of technology.

We sincerely hope that the book will inspire the students to learn and discuss the ideas behind basic principles of engineering physics and will surely contribute to the development of a solid foundation of the subject. We would be thankful to all beneficial comments and suggestions which will contribute to the improvement of the future editions of the book. It gives us immense pleasure to place this book in the hands of the teachers and students. It was indeed a big pleasure to work on different aspects covering in the book.

A. B. Bhattacharya, Atanu Nag

Outcome Based Education

For the implementation of an outcome based education the first requirement is to develop an outcome based curriculum and incorporate an outcome based assessment in the education system. By going through outcome based assessments evaluators will be able to evaluate whether the students have achieved the outlined standard, specific and measurable outcomes. With the proper incorporation of outcome based education there will be a definite commitment to achieve a minimum standard for all learners without giving up at any level. At the end of the programme running with the aid of outcome based education, a students will be able to arrive at the following outcomes:

- **PO-1: Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO-2: Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO-3:** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO-4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO-5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO-6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO-7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO-8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO-9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

- **PO-10: Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO-11: Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO-12: Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course Outcomes

After completion of the course the students will be able to:

- CO-1: Describe different physical concepts of static electromagnetic fields.
- CO-2: Explain the principles of electrostatics and magnetostatics to describe boundary conditions for electric fields and potentials.
- CO-3: Discuss the concepts related to Faraday's law of electromagnetic induction.
- CO-4: Apply the Maxwell's equations to solve problems relating to propagation of waves in electromagnetic field theory.
- CO-5: Analyze different properties of magnetic materials.
- CO-6: Analyze the propagation of electromagnetic waves in different media.

Course Outcomes		Expected Mapping with Programme Outcomes (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)										
Cutoonioo	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	3	1	1	-	-	-	-	-	-	-	-	-
CO-2	3	1	2	1	1	-	-	-	-	-	-	-
CO-3	3	2	1	1	-	-	-	-	-	-	-	-
CO-4	3	3	2	1	1	-	-	-	-	-	-	-
CO-5	3	1	3	1	2	-	-	-	-	-	-	-
CO-6	3	3	3	1	1	-	-	-	-	-	-	-

Abbreviations and Symbols

List of Abbreviations

General Terms						
Abbreviations	Full form	Abbreviations	Full form			
AC	Alternating Current	emf	electromotive force			
BW	Band Width	Ge	Germanium			
CO	Course Outcome	LCR	Inductor-Capacitor-Resistor			
CRO	Cathode Ray Oscilloscope	mmf	magnetomotive force			
CRT	Cathode Ray Tube	РО	Programme Outcome			
DC	Direct Current	Q-factor	Quality factor			
EM	electromagnetic	UO	Unit Outcome			
	Units Used					
Abbreviations Full form		Abbreviations	Full form			
А	ampere	nF	nano farad			
С	coulomb	Oe	oersted			
G	gauss	Т	tesla			
GHz	Gigahertz	V	volt			
Hz	hertz	W	watt			
kHz	kilohertz	Wb	weber			
mH	milli henry	μΑ	micro ampere			
nA	nano ampere	μC	micro coulomb			
	nuno umpere	· · ·				

List of Symbols

Symbols	Description	Symbols	Description
A	Magnetic vector potential	J	Current density
В	Magnetic induction	$J_{ m d}$	Displacement current density
С	Capacitance of a capacitor	K	Co-efficient of coupling
D	Electric displacement	L	Self-inductance
е	Electronic charge	M	Mutual inductance
Ε	Electric field intensity	M_s	Saturation magnetization
f_{res}	Resonant frequency	Р	Poynting vector
g	Gyromagnetic ratio	n	Effective number of Bohr
Н	<i>H</i> Magnetic intensity p_{eff}		magneton
Id	Displacement current	r	Reflection coefficient

Symbols	Description	Symbols	Description
R_H	Hall coefficient	\mathcal{E}_0	Permittivity of free space
S	Reluctance	ε_r , k	Relative permittivity
t	Transmission coefficient	λ	Linear charge density
T_N	Neel temperature	μ_0	Permeability of free space
U	Electromagnetic energy density	ρ	Volume charge density
V_H	Hall voltage	σ	Surface charge density
Ζ	Impedance of a medium	φ	Electric flux
α	Attenuation constant	φ_m	Magnetic scalar potential
β	Phase constant	Ψ	Wave function
γ	Propagation constant	$\omega_{ m L}$	Larmor frequency
δ	Skin depth	χ	Electromagnetic susceptibility

List of Figures

Unit 1 Electrostatics in Vacuum

Fig. 1.1 : Coulomb's law	4
Fig. 1.2 : Vector illustration of Coulomb's law	6
Fig. 1.3 : Coulomb's law for distributed charges	6
Fig. 1.4 : Illustrating superposition theorem	6
Fig. 1.5 : Electric field intensity at a point	8
Fig. 1.6 : Electric flux for an electric field	13
Fig. 1.7 : Illustration of Gauss's law	14
Fig. 1.8 : Gaussian field around a charged cylinder	16
Fig. 1.9 : Variation of <i>E</i> with <i>r</i> around a charged (a) hollow and (b) solid cylinder	17
Fig. 1.10: Gaussian surface (a) inside and (b) outside of a charged solid sphere	17
Fig. 1.11: Variation of E with r for a charged solid sphere	17
Fig. 1.12: Infinitely charged sheet	19
Fig. 1.13: Coulomb's law from Gauss law	20
Fig. 1.14: Electric field intensity	21
Fig. 1.15: Potential difference	21
Fig. 1.16: Potential due to a charge not at the origin	23
Fig. 1.17: Electric potential energy for a (a) two charge system and (b) three charge system	26
Fig. 1.18: Electric dipole	26
Fig. 1.19: Parallel plate capacitor	32
Fig. 1.20: Parallel plate capacitor with two dielectric layers	33
Fig. 1.21: Spherical capacitor	34
Fig. 1.22: Cylindrical capacitor	35
Fig. 1.23: Uniqueness theorem	37
Fig. 1.24: Point charge in front of a conducting plane	37
Fig. 1.25: Point charge in front of a grounded conducting sphere	38

Unit 2 Electrostatics in a Linear Dielectric Medium

Fig. 2.1 : (a) Polar and (b) non-polar dielectrics	56
Fig. 2.2 : (a) Polar and (b) non-polar dielectrics in presence of an electric field	57
Fig. 2.3 : Dielectric substance in an electric field	60
Fig. 2.4 : V-I phase dependence for (a) ideal, (b) real dielectrics	60
Fig. 2.5 : Parallel plate capacitor with (a) no dielectric and (b) given dielectric	62
Fig. 2.6 : (a) Neutral atom ($E = 0$) and (b) induced polarization in presence of E-field	66
Fig. 2.7 : Ionic polarization with (a) no field ($E = 0$), (b) applied field ($E \neq 0$)	67
Fig. 2.8 : Dipolar orientation in presence of electric field	68
Fig. 2.9 : Interfacial polarization with (a) no field ($E = 0$), (b) applied field ($E \neq 0$)	69

Fig. 2.10: Variation of dielectric constant with frequency	69
Fig. 2.11: Spherical cavity	71
Fig. 2.12: Concept of polar coordinates	71
Fig. 2.13: Dielectric sphere placed in a uniform electric field	73

Unit 3 Magnetostatics

92
95
96
98
100
102
103
106
106
107
108
109
110
111
113

Unit 4 Magnetostatics in a Linear Dielectric Medium

Fig. 4.1 : (a) M-H and (b) χ -T curve for diamagnetic substances	139
Fig. 4.2 : (a) M-H and (b) χ -T curve for paramagnetic substances	140
Fig. 4.3 : (a) M-H and (b χ -T curve for ferromagnetic substances	141
Fig. 4.4 : Electronic orbit of radius r	144
Fig. 4.5 : L precessing about H with Larmor frequency	144
Fig. 4.6 : $B_J(y)$ - y curve	150
Fig. 4.7 : µ-H (hysteresis) curve for ferromagnetic substances	152
Fig. 4.8 : Ferromagnetic domains	152
Fig. 4.9 : M-y curve for (a) $T < \theta_f$, (b) $T = \theta_f$ and (c) $T > \theta_f$	154
Fig. 4.10: M_s/M_m - T/ θ_f curve for different J values	155
Fig. 4.11: B-H curve of a ferromagnetic substance	157
Fig. 4.12: (a) Iron bar subjected to magnetization cycle and (b) its B-H curve	158
Fig. 4.13: Hysteresis loss	158
Fig. 4.14: Hysteresis curve for (a) silicon steel, (b) hard steel and (c) wrought iron	160
Fig. 4.15: χ -T curve for anti-ferromagnetic material	161
Fig. 4.16: Two sublattice model: Neel's theory	161

Fig. 4.17: $1/\chi$ -T curve for (a) anti-ferromagnetic, (b) paramagnetic and (c) ferromagnetic substances 162

- Fig. 4.18: Spin alignments for (a) paramagnetic, (b) ferromagnetic, (c) ferrimagnetic and (d) antiferro 163 magnetic substances
- Fig. 4.19: M-H curve for (a) diamagnetic, (b) paramagnetic, (c) ferromagnetic, (d) anti-ferromagnetic 163 and (e) ferrimagnetic substances

Unit 5 Faraday's Law

Fig. 5.1 : Illustration of Faraday's law of e.m. induction	179
Fig. 5.2 : Verification of Lenz's law	181
Fig. 5.3 : Verification of Fleming's right hand rule	181
Fig. 5.4 : Dynamically induced e.m.f.	182
Fig. 5.5 : Self induction	186
Fig. 5.6 : Mutual induction	186
Fig. 5.7 : Section of a solenoid	189
Fig. 5.8 : Two coils A and B placed adjacent to each other	191
Fig. 5.9 : Two magnetically coupled coils A and B	192
Fig. 5.10: (a) An inductor connected to a dc source, (b) energy stored in a coil in a magnetic field	196
Fig. 5.11: (a) A conducting block with high eddy currents and (b) a laminated block with low eddy	198
currents	

Unit 6 Maxwell's Equations

Fig. 6.1 : Concept of displacement current Fig. 6.2 : Illustration of Poynting's theorem	214 224
Unit 7 Electromagnetic Waves	
Fig. 7.1 : Transverse nature of EM wave	241
Fig. 7.2 : Attenuation of EM wave	247
Fig. 7.3 : Concept of Skin depth	247
Fig. 7.4 : Boundary conditions for D and B	249

Fig. 7.5 : Boundary conditions for E and H 250

Guidelines for Teachers

To implement Outcome Based Education (OBE) knowledge level and skill set of the students should be enhanced. Teachers should take a major responsibility for the proper implementation of OBE. Some of the responsibilities (not limited to) for the teachers in OBE system may be as follows:

- Within reasonable constraint, they should manoeuvre time to the best advantage of all students.
- They should assess the students only upon certain defined criterion without considering any other potential ineligibility to discriminate them.
- They should try to grow the learning abilities of the students to a certain level before they leave the institute.
- They should try to ensure that all the students are equipped with the quality knowledge as well as competence after they finish their education.
- They should always encourage the students to develop their ultimate performance capabilities.
- They should facilitate and encourage group work and team work to consolidate newer approach.
- They should follow Blooms taxonomy in every part of the assessment.

Level	Teacher should Check	Student should be able to	Possible Mode of Assessment
Create	Students ability to create	Design or Create	Mini project
Evaluate	Students ability to Justify	Argue or Defend	Assignment
Analyse	Students ability to distinguish	Differentiate or Distinguish	Project/Lab Methodology
Apply	Students ability to use information	Operate or Demonstrate	Technical Presentation/ Demonstration
Understand	Students ability to explain the ideas	Explain or Classify	Presentation/Seminar
Remember	Students ability to recall (or remember)	Define or Recall	Quiz

Bloom's Taxonomy

Guidelines for Students

Students should take equal responsibility for implementing the OBE. Some of the responsibilities (not limited to) for the students in OBE system are as follows:

- Students should be well aware of each UO before the start of a unit in each and every course.
- Students should be well aware of each CO before the start of the course.
- Students should be well aware of each PO before the start of the programme.
- Students should think critically and reasonably with proper reflection and action.
- Learning of the students should be connected and integrated with practical and real life consequences.
- Students should be well aware of their competency at every level of OBE.

CONTENTS

Foreword	iii
Acknowledgment	v
Preface	vii
Outcome Based Education	ix
Course Outcomes	xi
Abbreviations and Symbols	xii
List of Figures	xiv
Guidelines for Teachers	xvii
Guidelines for Students	xvii

Unit 1: Electrostatics in Vacuum

1-52

	Unit specifics	1
	Rationale	2
	Pre-requisites	2
	Unit outcomes	2
1.1	Introduction	3
1.2	Quantization of charges	3
1.3	Conservation of charge	3
1.4	Coulomb's law	3
	1.4.1 Vector form of Coulomb's law	5
1.5	Superposition principle	6
1.6	Change densities	7
1.7	Electric field and field intensity	8
1.8	Conservation of electrostatic field	12
1.9	Electric flux	13
1.10	Gauss law	13
	1.10.1 Gaussian surface	14
	1.10.2 Gauss's law in dielectric medium	14
	1.10.3 Differential form of Gauss's law	14
1.11	Application of Gauss's law	15
	1.11.1 Electric field around a charged cylinder	16
	1.11.2 Electric field due to a charged solid sphere	17
	1.11.3 Electric field due to an infinite charged sheet	19
1.12	Coulomb's law from Gauss's law	20
1.13	Electrostatic potential	20
1.14	Electric potential difference	21

1.15 Electric potential calculations	22
1.15.1 For a point charge	22
1.15.2 For distributed charges	23
1.16 Relation between field intensity and potential	24
1.17 Electrostatic potential energy	26
1.18 Electric dipole	26
1.19 Poisson's and Laplace's equations	28
1.19.1 Laplacian operator	29
1.20 Uniqueness theorem	30
1.21 Laplace's equation in Cartesian coordinate	31
1.22 Application of Laplace's equation	32
1.22.1 Parallel plate capacitor	32
1.22.2 Spherical capacitor	34
1.22.3 Cylindrical capacitor	35
1.23 Faraday cage	36
1.24 Coffee ring effect	36
1.25 Method of images	37
1.25.1 Point charge in front of a conducting plane	37
1.25.2 Point charge in front of a grounded conducting sphere	38
Unit summary	40
Exercises	42
Practical	48
Know more	49
References and suggested readings	52

Unit 2: Electrostatics in Linear Dielectric Medium

		52
	Unit specifics	53
	Rationale	54
	Pre-requisites	54
	Unit outcomes	54
2.1	Introduction	55
2.2	Dielectrics	55
	2.2.1 Classifications	56
2.3	Dielectric polarization	57
2.4	Electric dipole moment	57
2.5	Polarization vector	58
2.6	Electric susceptibility	58
2.7	Atomic polarizability	58
2.8	Dielectric substance in electric field	59
2.9	Dielectric under alternating field	60
2.10	Homogeneity, linearity and isotropy	61
2.11	Relation of flux density, intensity and polarization	61
	Flux density and electric flux	63

53-88

2.13	Gauss's law in dielectrics	63
2.14	Constitutive relations	63
	2.14.1 Electric susceptibility and dielectric constant	63
	2.14.2 Electric susceptibility and atomic polarizability	64
	2.14.3 Electric polarization and dielectric constant	64
2.15	Types of polarization	65
	2.15.1 Induced (Electronic) polarization	65
	2.15.2 Atomic (Ionic) polarization	67
	2.15.3 Dipolar (orientational) polarization	68
	2.15.4 Interfacial (space charge) polarization	69
2.16	Polarization of monoatomic gas	69
2.17	Polarization of polyatomic gas	70
2.18	Clausius Mossotti relation	70
2.19	Dielectric sphere in uniform electric field	73
2.20	Dielectric strength and breakdown	76
2.21	Applications of dielectrics	76
	Unit summary	77
	Exercises	79
	Practical	83
	Know more	86
	References and suggested readings	88

Unit 3: Magnetostatics

89_	1	3	2
02-	ι.	J	4

	Unit specifics	89
	Rationale	90
	Pre-requisites	90
	Unit outcomes	90
3.1	Introduction	91
3.2	Current and current density	91
3.3	Electrical conductivity	91
3.4	Continuity equation	92
3.5	Steady current	93
3.6	Lorentz force	94
3.7	Biot-Savart law	95
	3.7.1 Applications	96
3.8	Current carrying conductor	103
3.9	Moving charge in a magnetic field	104
3.10) Ampere's circuital law	105
	3.10.1 Ampere's circuital law in differential form	105
	3.10.2 Applications of Amperes law	106
3.11	Curl of magnetic field	110
3.12	2 Gauss's law in magnetostatics	111
3.13	Magnetic scalar potential	112

3.14 Magnetic vector potential	114
3.15 Comparison of electric and magnetic fields	116
Unit summary	117
Exercises	118
Practicals	123
Know more	129
References and suggested readings	131

133-174

Unit 4: Magnetostatics in Linear Dielectric Medium

	Unit specifics	133
	Rationale	134
	Pre-requisites	134
	Unit outcomes	134
4.1	Introduction	135
4.2	Magnetic induction and intensity	135
4.3	Magnetization	135
4.4	Magnetic susceptibility	136
4.5	Relation among B, H and M	138
4.6	Classifications of magnetic materials	139
	4.6.1 Diamagnetism	139
	4.6.2 Paramagnetism	140
	4.6.3 Ferromagnetism	140
	4.6.4 Ferrimagnetism	141
	4.6.5 Anti-ferromagnetism	142
4.7	Permanent magnetic dipoles	142
4.8	Hund's rule	144
4.9	Langevin's theory of diamagnetism	144
4.10	Langevin's theory of paramagnetism	147
4.11	Curie-Weiss law	151
4.12	Ferromagnetic materials	152
	4.12.1 Domain theory	152
4.13	Weiss molecular field theory	153
4.14	Differences of three magnetic substances	156
4.15	B-H Curve	157
	4.15.1 Magnetic calculations from B-H curves	157
4.16	Magnetic hysteresis	157
	4.16.1 Hysteresis loop	157
	4.16.2 Hysteresis loss	158
4.17	8	160
	Neel's molecular field theory	160
4.19	Ferrimagnetic materials	163

4.20	Ferrites	163
	4.20.1 Soft magnetic materials	164
	4.20.2 Hard magnetic materials	164
	Unit summary	165
	Exercises	166
	Practical	171
	Know more	172
	References and suggested readings	174

Unit 5: Faraday's Law

Unit specifics

175-210

	Unit specifics	175
	Rationale	176
	Pre-requisites	176
	Unit outcomes	176
5.1	Introduction	177
5.2	Magnetic flux	177
5.3	Magnetic flux density	177
	5.3.1 Unit and dimension	177
5.4	Faraday's laws	178
	5.4.1 Integral and differential form of Faraday's law	179
	5.4.2 Induced e.m.f. and current	180
5.5	Lenz's law	181
	5.5.1 Lenz's law and conservation of energy	181
5.6	Fleming's right hand rule	181
5.7	Induced e.m.f.	182
5.8	Selfinductance	187
	5.8.1 Coeffecient of self induction	187
5.9	Mutual inductance	191
	5.9.1 Coefficient of mutual induction	191
5.10	Coefficient of coupling	195
5.11	Energy stored in a coil in a magnetic field	196
5.12	Eddy currents	198
5.13	Electromagnetic braking	198
	Unit summary	199
	Exercises	200
	Practicals	203
	Know more	208
Refe	erences and suggested readings	209
Uni	t 6: Maxwell's Equations	211-236

<i>Jnit</i> 6: Maxwell's Equations	211-236

211

	Rationale	212
	Pre-requisites	212
	Unit outcomes	212
6.1	Introduction	213
6.2	Displacement current	213
	6.2.1 Conduction current versus displacement current	216
6.3	Maxwell's equations	217
	6.3.1 Gauss's law in electrostatics and dielectrics	217
	6.3.2 Gauss's law in magnetostatics	217
	6.3.3 Faraday's law of electromagnetic induction	218
	6.3.4 Modified Ampere's circuital law	219
6.4	Significance of Maxwell's equations	220
	6.4.1 1st equation	220
	6.4.2 2nd equation	221
	6.4.3 3rd equation	221
	6.4.4 4th equation	221
6.5	EM energy density	221
6.6	Poynting vector	222
6.7	Poynting theorem	223
6.8	Electromagnetic potential	224
6.9	Momentum and pressure of EM waves	226
	Unit summary	228
	Exercises	229
	Know more	233
	References and suggested readings	236

Unit 7: Electromagnetic Waves

237-260

	Unit specifics	237
	Rationale	238
	Pre-requisites	238
	Unit outcomes	238
7.1	Introduction	239
7.2	Wave equation for free space	239
7.3	Transverse nature of EM wave	240
7.4	EM wave in non-conducting (dielectric) media	243
7.5	EM wave in conducting media	244
7.6	Attenuation of EM wave in conducting media	245
7.0	5.1 Skin depth	247
7.7	Boundary conditions for EM waves	248
7.8	Reflection and transmission of EM waves	251
	Unit summary	254

Exercises	255
Know more	258
References and suggested readings	260
Cable of Physical Constants	
Table I : Molar Susceptibility of Different Materials at 20°C	261
Table II : Permeability and Relative Permeability of Different Materials	261
Table III : Dielectric constant of Different Materials	262
Appendices	263-266
Appendix - A : Suggestive Template for Practicals	263
Appendix - B : Indicative Evaluation Guidelines for Practicals / Projects / Activities in Group	264
Appendix - C : Assessments Aligned to Bloom's Level	265
Appendix - D : Records for Practicals	266
Annexures	267-278
Annexure-I : Some important second order partial differential equation	267
Annexure-II : Solutions of Laplace's equation	268
Annexure-III: Series RLC circuit phase angle	269
Annexure-IV: Legendre polynomials	270
Annexure-V : Different types of error in measurements	272
Annexure-VI: Some general and specific instructions when working in the laboratory	278
References for Further Learning	
CO and PO Attainment Table	
Index	